pyspark.sql.DataFrame.withMetadata#
- DataFrame.withMetadata(columnName, metadata)[source]#
Returns a new
DataFrame
by updating an existing column with metadata.New in version 3.3.0.
Changed in version 3.4.0: Supports Spark Connect.
- Parameters
- columnNamestr
string, name of the existing column to update the metadata.
- metadatadict
dict, new metadata to be assigned to df.schema[columnName].metadata
- Returns
DataFrame
DataFrame with updated metadata column.
Examples
>>> df = spark.createDataFrame([(2, "Alice"), (5, "Bob")], schema=["age", "name"]) >>> df_meta = df.withMetadata('age', {'foo': 'bar'}) >>> df_meta.schema['age'].metadata {'foo': 'bar'}